Title of article :
The generalized localization for multiple Fourier integrals
Author/Authors :
Ashurov، نويسنده , , Ravshan and Ahmedov، نويسنده , , Anvarjon and Rodzi b. Mahmud، نويسنده , , Ahmad، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
In this paper we investigate almost-everywhere convergence properties of the Bochner–Riesz means of N-fold Fourier integrals under summation over domains bounded by the level surfaces of the elliptic polynomials. It is proved that if the order of the Bochner–Riesz means s ⩾ ( N − 1 ) ( 1 / p − 1 / 2 ) , then the Bochner–Riesz means of a function f ∈ L p ( R N ) , 1 ⩽ p ⩽ 2 converge to zero almost-everywhere on R N ∖ supp ( f ) .
Keywords :
Spectral expansions of elliptic differential operators , The generalized localization , Bochner–Riesz means , Multiple Fourier integral
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications