Title of article :
Boundary controllability for the semilinear Schrِdinger equations on Riemannian manifolds
Author/Authors :
Deng، نويسنده , , Li and Yao، نويسنده , , Peng-Fei، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
26
From page :
19
To page :
44
Abstract :
We study the boundary exact controllability for the semilinear Schrödinger equation defined on an open, bounded, connected set Ω of a complete, n-dimensional, Riemannian manifold M with metric g. We prove the locally exact controllability around the equilibria under some checkable geometrical conditions. Our results show that exact controllability is geometrical characters of a Riemannian metric, given by the coefficients and equilibria of the semilinear Schrödinger equation. We then establish the globally exact controllability in such a way that the state of the semilinear Schrödinger equation moves from an equilibrium in one location to an equilibrium in another location.
Keywords :
Semilinear Schrِdinger equation , Exact controllability , Riemannian metric
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561312
Link To Document :
بازگشت