Title of article :
The numerical range of a tridiagonal operator
Author/Authors :
Chien، نويسنده , , Mao-Ting and Nakazato، نويسنده , , Hiroshi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
8
From page :
297
To page :
304
Abstract :
Let r be a real number and A a tridiagonal operator defined by A e j = e j − 1 + r j e j + 1 , j = 1 , 2 , … , where { e 1 , e 2 , … } is the standard orthonormal basis for ℓ 2 ( N ) . Such tridiagonal operators arise in Rogers–Ramanujan identities. In this paper, we study the numerical ranges of these tridiagonal operators and finite-dimensional tridiagonal matrices. In particular, when r = − 1 , the numerical range of the finite-dimensional tridiagonal matrix is the convex hull of two explicit ellipses. Applying the result, we obtain that the numerical range of the tridiagonal operator is the square { z ∈ C : − 1 ⩽ R ( z ) ⩽ 1 , − 1 ⩽ ℑ ( z ) ⩽ 1 } \ { 1 + i , 1 − i , − 1 + i , − 1 − i } .
Keywords :
Tridiagonal operator , Numerical range , Rogers–Ramanujan identities
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561390
Link To Document :
بازگشت