Title of article :
Multiplication operators in Köthe–Bochner spaces
Author/Authors :
Calabuig، نويسنده , , J.M. and Rodrيguez، نويسنده , , J. and Sلnchez-Pérez، نويسنده , , E.A.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
6
From page :
316
To page :
321
Abstract :
Let X be a Banach space and E an order continuous Banach function space over a finite measure μ. We prove that an operator T in the Köthe–Bochner space E ( X ) is a multiplication operator (by a function in L ∞ ( μ ) ) if and only if the equality T ( g 〈 f , x ∗ 〉 x ) = g 〈 T ( f ) , x ∗ 〉 x holds for every g ∈ L ∞ ( μ ) , f ∈ E ( X ) , x ∈ X and x ∗ ∈ X ∗ .
Keywords :
Lebesgue–Bochner space , Pettis integrable function , Pettis norm , K?the–Bochner space , Multiplication operator
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561392
Link To Document :
بازگشت