Title of article :
A model containing both the Camassa–Holm and Degasperis–Procesi equations
Author/Authors :
Lai، نويسنده , , Shaoyong and Wu، نويسنده , , Yonghong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Abstract :
A nonlinear dispersive partial differential equation, which includes the famous Camassa–Holm and Degasperis–Procesi equations as special cases, is investigated. Although the H 1 -norm of the solutions to the nonlinear model does not remain constants, the existence of its weak solutions in lower order Sobolev space H s with 1 < s ⩽ 3 2 is established under the assumptions u 0 ∈ H s and ‖ u 0 x ‖ L ∞ < ∞ . The local well-posedness of solutions for the equation in the Sobolev space H s ( R ) with s > 3 2 is also developed.
Keywords :
Camassa–Holm equation , Degasperis–Procesi , Weak solution , Local well-posedness
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications