Title of article :
Nonlinear resonant periodic problems with concave terms
Author/Authors :
Aizicovici، نويسنده , , Sergiu and Papageorgiou، نويسنده , , Nikolaos S. and Staicu، نويسنده , , Vasile، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
23
From page :
342
To page :
364
Abstract :
We consider a nonlinear periodic problem, driven by the scalar p-Laplacian with a concave term and a Caratheodory perturbation. We assume that this perturbation f ( t , x ) is ( p − 1 ) -linear at ±∞, and resonance can occur with respect to an eigenvalue λ m + 1 , m ⩾ 2 , of the negative periodic scalar p-Laplacian. Using a combination of variational techniques, based on the critical point theory, with Morse theory, we establish the existence of at least three nontrivial solutions. Useful in our considerations is an alternative minimax characterization of λ 1 > 0 (the first nonzero eigenvalue) that we prove in this work.
Keywords :
C-condition , Concave term , Contractible space , Strong deformation retract , Critical groups , Ekeland variational principle , Homotopy equivalent
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561521
Link To Document :
بازگشت