Title of article :
Continuity properties of solutions to some degenerate elliptic equations
Author/Authors :
Mariconda، نويسنده , , Carlo and Treu، نويسنده , , Giulia، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
14
From page :
788
To page :
801
Abstract :
We consider a nonlinear (possibly) degenerate elliptic operator L v = − div a ( ∇ v ) + b ( x , v ) where the field a and the function b are (unnecessarily strictly) monotonic and a satisfies a very mild ellipticity assumption. For a given boundary datum ϕ we prove the existence of the maximum and the minimum of the solutions and formulate a Haar–Radò type result, namely a continuity property for these solutions that may follow from the continuity of ϕ. In the homogeneous case we formulate some generalizations of the Bounded Slope Condition and use them to obtain the Lipschitz or local Lipschitz regularity of solutions to L u = 0 . We prove the global Hölder regularity of the solutions in the case where ϕ is Lipschitz.
Keywords :
Hِlder , Lipschitz , Elliptic , Nonlinear , Convex , PDE , nonsmooth , Degenerate
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561837
Link To Document :
بازگشت