Title of article :
Limit cycles bifurcating from isochronous surfaces of revolution in
Author/Authors :
Llibre، نويسنده , , Jaume and Rebollo-Perdomo، نويسنده , , Salomَn and Torregrosa، نويسنده , , Joan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Abstract :
In this paper we study the number of limit cycles bifurcating from isochronous surfaces of revolution contained in R 3 , when we consider polynomial perturbations of arbitrary degree. The method for studying these limit cycles is based on the averaging theory and on the properties of Chebyshev systems. We present a new result on averaging theory and generalizations of some classical Chebyshev systems which allow us to obtain the main results.
Keywords :
Averaging method , Periodic orbit , Isochronous set , limit cycle
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications