Title of article :
The algebraic structure of finitely generated -modules and the Helly theorem in random normed modules
Author/Authors :
Guo، نويسنده , , Tiexin and Shi، نويسنده , , Guang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Abstract :
Let K be the scalar field of real numbers or complex numbers and L 0 ( F , K ) the algebra of equivalence classes of K-valued random variables defined on a probability space ( Ω , F , P ) . In this paper, we first characterize the algebraic structure of finitely generated L 0 ( F , K ) -modules and then combining the recently developed separation theorem in random locally convex modules we prove the Helly theorem in random normed modules with the countable concatenation property under the framework of random conjugate spaces at the same time a simple counterexample shows that it is necessary to require the countable concatenation property.
Keywords :
Finitely generated L 0 ( F , K ) -module , Random normed module , Helly theorem
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications