Title of article
The algebraic structure of finitely generated -modules and the Helly theorem in random normed modules
Author/Authors
Guo، نويسنده , , Tiexin and Shi، نويسنده , , Guang، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2011
Pages
10
From page
833
To page
842
Abstract
Let K be the scalar field of real numbers or complex numbers and L 0 ( F , K ) the algebra of equivalence classes of K-valued random variables defined on a probability space ( Ω , F , P ) . In this paper, we first characterize the algebraic structure of finitely generated L 0 ( F , K ) -modules and then combining the recently developed separation theorem in random locally convex modules we prove the Helly theorem in random normed modules with the countable concatenation property under the framework of random conjugate spaces at the same time a simple counterexample shows that it is necessary to require the countable concatenation property.
Keywords
Finitely generated L 0 ( F , K ) -module , Random normed module , Helly theorem
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2011
Journal title
Journal of Mathematical Analysis and Applications
Record number
1561995
Link To Document