• Title of article

    The algebraic structure of finitely generated -modules and the Helly theorem in random normed modules

  • Author/Authors

    Guo، نويسنده , , Tiexin and Shi، نويسنده , , Guang، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2011
  • Pages
    10
  • From page
    833
  • To page
    842
  • Abstract
    Let K be the scalar field of real numbers or complex numbers and L 0 ( F , K ) the algebra of equivalence classes of K-valued random variables defined on a probability space ( Ω , F , P ) . In this paper, we first characterize the algebraic structure of finitely generated L 0 ( F , K ) -modules and then combining the recently developed separation theorem in random locally convex modules we prove the Helly theorem in random normed modules with the countable concatenation property under the framework of random conjugate spaces at the same time a simple counterexample shows that it is necessary to require the countable concatenation property.
  • Keywords
    Finitely generated L 0 ( F , K ) -module , Random normed module , Helly theorem
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2011
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    1561995