Title of article :
Positive solutions for nonlinear periodic problems with concave terms
Author/Authors :
Aizicovici، نويسنده , , Sergiu and Papageorgiou، نويسنده , , Nikolaos S. and Staicu، نويسنده , , Vasile، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Abstract :
We consider a nonlinear periodic problem, driven by the scalar p-Laplacian, with a parametric concave term and a Carathéodory perturbation whose potential (primitive) exhibits a p-superlinear growth near +∞, without satisfying the usual in such cases Ambrosetti–Rabinowitz condition. Using critical point theory and truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies.
Keywords :
Concave and convex nonlinearities , C-condition , Mountain pass theorem , Local minimizer , Bifurcation-type theorem , Positive solution
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications