Title of article :
A merit function method for infinite-dimensional SOCCPs
Author/Authors :
Chiang، نويسنده , , Yungyen and Pan، نويسنده , , Shaohua and Chen، نويسنده , , Jein-Shan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
20
From page :
159
To page :
178
Abstract :
We introduce the Jordan product associated with the second-order cone K into the real Hilbert space H , and then define a one-parametric class of complementarity functions Φ t on H × H with the parameter t ∈ [ 0 , 2 ) . We show that the squared norm of Φ t with t ∈ ( 0 , 2 ) is a continuously F(réchet)-differentiable merit function. By this, the second-order cone complementarity problem (SOCCP) in H can be converted into an unconstrained smooth minimization problem involving this class of merit functions, and furthermore, under the monotonicity assumption, every stationary point of this minimization problem is shown to be a solution of the SOCCP.
Keywords :
Hilbert space , Complementarity , Second-order cone , Merit functions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562094
Link To Document :
بازگشت