Title of article :
The spaces for compact metric spaces K and X with a uniformly convex maximal factor
Author/Authors :
Galego، نويسنده , , Elَi Medina، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Abstract :
In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C ( K , X ) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C ( K ) spaces. This provides a vector-valued extension of classical results of Bessaga and Pełczyński (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C ( K ) spaces. As a consequence, we show that if 1 < p < q < ∞ then for every infinite countable compact metric spaces K 1 , K 2 , K 3 and K 4 are equivalent:(a)
1 , l p ) ⊕ C ( K 2 , l q ) is isomorphic to C ( K 3 , l p ) ⊕ C ( K 4 , l q ) .
1 ) is isomorphic to C ( K 3 ) and C ( K 2 ) is isomorphic to C ( K 4 ) .
Keywords :
X ) spaces , Bessaga–Pe?czy?ski?s and Milutin?s theorems on separable C ( K ) spaces , Isomorphic classification of C ( K
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications