Title of article :
Spectral multipliers from to
Author/Authors :
Chen، نويسنده , , Peng، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
12
From page :
622
To page :
633
Abstract :
Let L be a non-negative self-adjoint operator acting on L 2 ( X ) , where X is a space of homogeneous type. Assume that the heat kernels p t ( x , y ) corresponding to the semigroup e − t L satisfy Gaussian upper bounds but possess no regularity in variables x and y. In this article, we prove a spectral multiplier theorem for F ( L ) from H L 1 ( X ) to L q ( X ) for some 1 ⩽ q ⩽ 2 , if the function F possesses the Sobolev norm of order s with suitable bounds and s > n ( 1 q − 1 2 ) where n is a measure of the dimension of the space. We also study the weighted L p – L q estimates for spectral multiplier theorem.
Keywords :
A p weighs , Spectral multipliers , Self-adjoint operators , BMO space , Hardy space
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562259
Link To Document :
بازگشت