Title of article :
Pseudo-Taylor expansions and the Carathéodory–Fejér problem
Author/Authors :
Agler، نويسنده , , Jim and Lykova، نويسنده , , Zinaida A. and Young، نويسنده , , N.J.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
11
From page :
308
To page :
318
Abstract :
We give a new solvability criterion for the boundary Carathéodory–Fejér problem: given a point x ∈ R and, a finite set of target values a 0 , a 1 , … , a n ∈ C , to construct a function f in the Pick class such that the limit of f ( k ) ( z ) / k ! as z → x nontangentially in the upper half-plane is a k for k = 0 , 1 , … , n . The criterion is in terms of positivity of an associated Hankel matrix. The proof is based on a reduction method due to Julia and Nevanlinna.
Keywords :
Boundary interpolation , Pick class , Schur Complement , Hankel matrix
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562333
Link To Document :
بازگشت