Title of article :
Shapiroʼs Theorem for subspaces
Author/Authors :
Almira، نويسنده , , J.M. and Oikhberg، نويسنده , , T.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
21
From page :
282
To page :
302
Abstract :
In the previous paper (Almira and Oikhberg, 2010 [4]), the authors investigated the existence of an element x of a quasi-Banach space X whose errors of best approximation by a given approximation scheme ( A n ) (defined by E ( x , A n ) = inf a ∈ A n ‖ x − a n ‖ ) decay arbitrarily slowly. In this work, we consider the question of whether x witnessing the slowness rate of approximation can be selected in a prescribed subspace of X. In many particular cases, the answer turns out to be positive.
Keywords :
Approximation scheme , approximation error , Approximation with restrictions , Bernstein?s Lethargy Theorem , Shapiro?s Theorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562508
Link To Document :
بازگشت