Title of article :
Convergence of sequences of two-dimensional Fejér means of trigonometric Fourier series of integrable functions
Author/Authors :
Gلt، نويسنده , , Gyِrgy، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
The aim of this paper is to prove the a.e. convergence of sequences of the Fejér means of the trigonometric Fourier series of two variable integrable functions. That is, let a = ( a 1 , a 2 ) : N → N 2 such that a j ( n + 1 ) ⩾ α sup k ⩽ n a j ( k ) ( j = 1 , 2 , n ∈ N ) for some α > 0 and a 1 ( + ∞ ) = a 2 ( + ∞ ) = + ∞ . Then for each integrable function f ∈ L 1 ( T 2 ) we have the a.e. relation lim n → ∞ σ a ( n ) f = f . It will be a straightforward and easy consequence of this result the historical cone restricted a.e. convergence result with respect to the two-dimensional Fejér means of integrable functions due to Marcinkiewicz and Zygmund (1939) [7].
Keywords :
Trigonometric system , Two-dimensional Fejér means , Subsequence , almost everywhere convergence
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications