Title of article :
Optimal logarithmic estimates in the Hardy–Sobolev space of the disk and stability results
Author/Authors :
Feki، نويسنده , , I. and Nfata، نويسنده , , H. and Wielonsky، نويسنده , , F.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
10
From page :
366
To page :
375
Abstract :
We prove a logarithmic estimate in the Hardy–Sobolev space H k , 2 , k a positive integer, of the unit disk D . This estimate extends those previously established by L. Baratchart and M. Zerner in H 1 , 2 and by S. Chaabane and I. Feki in H k , ∞ . We use it to derive logarithmic stability results for the inverse problem of identifying Robin’s coefficients in corrosion detection by electrostatic boundary measurements and for a recovery interpolation scheme in the Hardy–Sobolev space H k , 2 with interpolation points located on the boundary T of the unit disk.
Keywords :
Hardy–Sobolev space , Logarithmic estimate , stability , Inverse problem , Hardy–Landau–Littlewood inequality
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562997
Link To Document :
بازگشت