Title of article :
Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation
Author/Authors :
Levchenko، نويسنده , , E.A. and Shapovalov، نويسنده , , A.V. and Trifonov، نويسنده , , A.Yu.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.
proach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov population equation.
Keywords :
Semiclassical approximation , Nearly linear equation , Lie symmetries , Integro-differential equation , Fisher–Kolmogorov–Petrovskii–Piskunov equation
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications