Title of article :
Rational interpolation: II. Quadrature and convergence
Author/Authors :
Deckers، نويسنده , , Karl and Bultheel، نويسنده , , Adhemar، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
18
From page :
124
To page :
141
Abstract :
Consider an n th rational interpolatory quadrature rule J n σ ( f ) = ∑ j = 1 n λ j f ( x j ) to approximate integrals of the form J σ ( f ) = ∫ − 1 1 f ( x ) d σ ( x ) , where σ is a (possibly complex) bounded measure with infinite support on the interval [ − 1 , 1 ] . First, we discuss the connection of J n σ ( f ) with certain rational interpolatory quadratures on the complex unit circle to approximate integrals of the form ∫ − π π f ̊ ( e i θ ) d σ c ( θ ) , where σ c is a (possibly complex) bounded measure with infinite support on [ − π , π ] . Next, we provide conditions to ensure the convergence of J n σ ( f ) to J σ ( f ) for n tending to infinity. Finally, an upper bound for the error on the n th approximation and an estimate for the rate of convergence is provided.
Keywords :
Orthogonal rational functions , Rational interpolation , Rational quadrature rules , Error Bound , Convergence Rate
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563136
Link To Document :
بازگشت