Title of article :
Strong skew commutativity preserving maps on von Neumann algebras
Author/Authors :
Qi ، نويسنده , , Xiaofei and Hou، نويسنده , , Jinchuan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
9
From page :
362
To page :
370
Abstract :
Let M be a von Neumann algebra without central summands of type I 1 . Assume that Φ : M → M is a surjective map. It is shown that Φ is strong skew commutativity preserving (that is, satisfies Φ ( A ) Φ ( B ) − Φ ( B ) Φ ( A ) ∗ = A B − B A ∗ for all A , B ∈ M ) if and only if there exists some self-adjoint element Z in the center of M with Z 2 = I such that Φ ( A ) = Z A for all A ∈ M . The strong skew commutativity preserving maps on prime involution rings and prime involution algebras are also characterized.
Keywords :
Skew Lie products , Von Neumann algebras , Prime rings , General preserving maps
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563156
Link To Document :
بازگشت