Title of article :
Weak convergence analysis of the linear implicit Euler method for semilinear stochastic partial differential equations with additive noise
Author/Authors :
Wang، نويسنده , , Xiaojie and Gan، نويسنده , , Siqing، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
19
From page :
151
To page :
169
Abstract :
In this paper, we analyze the weak error of a semi-discretization in time by the linear implicit Euler method for semilinear stochastic partial differential equations (SPDEs) with additive noise. The main result reveals how the weak order depends on the regularity of noise and that the order of weak convergence is twice that of strong convergence. In particular, the linear implicit Euler method for SPDEs driven by trace class noise achieves an almost optimal order 1 − ϵ for arbitrarily small ϵ > 0 .
Keywords :
Semilinear stochastic partial differential equation , additive noise , Linear implicit Euler method , weak convergence
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563212
Link To Document :
بازگشت