Title of article :
Persistence and extinction in spatial models with a carrying capacity driven diffusion and harvesting
Author/Authors :
Korobenko، نويسنده , , L. and Kamrujjaman، نويسنده , , Md. and Braverman، نويسنده , , E.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
17
From page :
352
To page :
368
Abstract :
For the reaction–diffusion equation ∂ u ( t , x ) ∂ t = D Δ ( u ( t , x ) K ( t , x ) ) + r ( t , x ) u ( t , x ) g ( K ( t , x ) , u ( t , x ) ) − E ( t , x ) u ( t , x ) with the general type of growth, diffusion stipulated by the carrying capacity K and harvesting, existence, positivity, persistence, extinction and stability of solutions are investigated. In numerical simulations, the results are compared to the model with a regular diffusion.
Keywords :
Positive periodic solution , Rate of convergence , Logistic law , Gilpin–Ayala growth , Gompertz function , Global attractivity , Maximal yield , diffusion , Harvesting
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563309
Link To Document :
بازگشت