Title of article :
Solutions of the 3D Navier–Stokes equations for initial data in : Robustness of regularity and numerical verification of regularity for bounded sets of initial data in
Author/Authors :
Marيa and Marيn-Rubio، نويسنده , , Pedro and Robinson، نويسنده , , James C. and Sadowski، نويسنده , , Witold، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
10
From page :
76
To page :
85
Abstract :
We consider the three-dimensional Navier–Stokes equations on a periodic domain. We give a simple proof of the local existence of solutions in H ̇ 1 / 2 , and show that the existence of a regular solution on a bounded time interval [ 0 , T ] is stable with respect to perturbations of the initial data in H ̇ 1 / 2 and perturbations of the forcing function in L 2 ( 0 , T ; H − 1 / 2 ) . This forms the key ingredient in a proof that the assumption of regularity for all initial conditions in any given ball in H ̇ 1 can be verified computationally in a finite time, strengthening a previous result of Robinson and Sadowski [J.C. Robinson and W. Sadowski, Numerical verification of regularity in the three-dimensional Navier-Stokes equations for bounded sets of initial data, Asymptot. Anal. 59 (2008) 39–50].
Keywords :
Navier–Stokes equations , Critical spaces , Regularity
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563351
Link To Document :
بازگشت