Title of article :
Decay of the non-isentropic Navier–Stokes–Poisson equations
Author/Authors :
Tan، نويسنده , , Zhong and Zhang، نويسنده , , Xu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
We establish the time decay rates of the solution to the Cauchy problem for the non-isentropic compressible Navier–Stokes–Poisson system via a refined pure energy method. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As a corollary, we also obtain the usual L p − L 2 ( 1 < p ≤ 2 ) type of the optimal decay rates. The H ̇ − s ( 0 ≤ s < 3 / 2 ) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis.
Keywords :
Sobolev interpolation , Negative Sobolev space , Optimal decay rates , energy method , Navier–Stokes–Poisson equations
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications