Title of article :
Standing waves for quasilinear Schrِdinger equations
Author/Authors :
Wang، نويسنده , , Youjun and Yao، نويسنده , , Yangxin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
6
From page :
305
To page :
310
Abstract :
We study the existence of standing waves for a class of quasilinear Schrödinger equations − Δ u + V ( x ) u − [ Δ ( u 2 ) ] u = μ | u | q − 2 u + | u | r − 2 u , x ∈ R N , where N ≥ 3 , 2 < q < 4 , 4 < r < 2 ( 2 ∗ ) ≔ 4 N / ( N − 2 ) and μ ≥ 0 . V is a positive potential. One main difficulty in dealing with this problem seems to be that of obtaining the boundedness of a (PS) sequence for the corresponding functional. We overcome this difficulty by using Jeanjean’s result [L. Jeanjean, On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787–809]. Our results answer some questions raised in [J. M. do Ó, U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Comm. Pure Appl. Anal. 8 (2009) 621–644].
Keywords :
Mountain-pass geometry , Standing waves , Quasilinear Schrِdinger equations
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563372
Link To Document :
بازگشت