Title of article :
Binary Bell polynomial manipulations on the integrability of a generalized (2+1) -dimensional Korteweg–de Vries equation
Author/Authors :
Wang، نويسنده , , Yunhu and Chen، نويسنده , , Yong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
11
From page :
624
To page :
634
Abstract :
This paper investigates the integrability of a generalized (2+1)-dimensional Korteweg–de Vries equation. With the aid of binary Bell polynomials, its bilinear formalism, bilinear Bäcklund transformation, Lax pair and Darboux covariant Lax pair are succinctly constructed, which can be reduced to the ones of several integrable equations such as the Korteweg–de Vries equation and the Calogero–Bogoyavlenskii–Schiff equation. Moreover, the infinite conservation laws of the generalized (2+1)-dimensional Korteweg–de Vries equation are found by virtue of binary Bell polynomials. All conserved densities and fluxes are given with explicit recursion formulas.
Keywords :
Infinite conservation law , Darboux covariant Lax pair , Binary Bell polynomial , Lax pair , Bنcklund transformation , N -soliton solution
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563400
Link To Document :
بازگشت