Title of article :
Semipositone problems with falling zeros on exterior domains
Author/Authors :
Sankar، نويسنده , , Lakshmi and Sasi، نويسنده , , Sarath and Shivaji، نويسنده , , R.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
8
From page :
146
To page :
153
Abstract :
We study boundary value problems of the form { − Δ u = λ K ( | x | ) f ( u ) , x ∈ Ω u = 0 if  | x | = r 0 u → 0 as  | x | → ∞ , where λ is a positive parameter, Δ u = div ( ∇ u ) is the Laplacian of u , Ω = { x ∈ R n ; n > 2 , | x | > r 0 } , K belongs to a class of C 1 functions such that lim r → ∞ K ( r ) = 0 , and f belongs to a class of C 1 functions which are negative at the origin and have falling zeros. We discuss the existence and uniqueness of nonnegative radial solutions when λ is large.
Keywords :
existence , Falling zeros , Exterior domains , Uniqueness , Semipositone problems
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563423
Link To Document :
بازگشت