Title of article :
A reflexive Banach space whose algebra of operators is not a Grothendieck space
Author/Authors :
Kania، نويسنده , , Tomasz، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
2
From page :
242
To page :
243
Abstract :
By a result of Johnson, the Banach space F = ( ⨁ n = 1 ∞ ℓ 1 n ) ℓ ∞ contains a complemented copy of ℓ 1 . We identify F with a complemented subspace of the space of (bounded, linear) operators on the reflexive space ( ⨁ n = 1 ∞ ℓ 1 n ) ℓ p ( p ∈ ( 1 , ∞ ) ), thus solving negatively the problem posed in the monograph of Diestel and Uhl which asks whether the space of operators on a reflexive Banach space is Grothendieck.
Keywords :
Space of bounded operators , Reflexive space , Banach space , Grothendieck space
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563432
Link To Document :
بازگشت