Title of article :
An integral operator induced by a Zygmund function
Author/Authors :
Hu، نويسنده , , Yun and Song، نويسنده , , Jinrong and Wei، نويسنده , , Huaying and Shen، نويسنده , , Yuliang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
8
From page :
560
To page :
567
Abstract :
We introduce a kernel function induced by a continuous function f on the unit circle, and show that the corresponding integral operator on the standard Bergman space is a bounded, compact or Hilbert–Schmidt operator precisely when f belongs to the big Zygmund class Λ ∗ , the little Zygmund class λ ∗ or the Sobolev class H 3 2 , respectively. This may be considered as the infinitesimal version of the main result obtained in Hu and Shen (2012) [9] by two of the authors.
Keywords :
Quasiconformal deformation , Integral operator , Zygmund function
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563465
Link To Document :
بازگشت