Title of article :
Differentiability of the Minkowski question mark function
Author/Authors :
Dushistova، نويسنده , , Anna A. and Kan، نويسنده , , Igor D. and Moshchevitin، نويسنده , , Nikolay G.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
21
From page :
774
To page :
794
Abstract :
We get necessary and sufficient conditions for the derivative of the Minkowski question mark function ? ( x ) to be equal to zero or infinity. These conditions are formulated in terms of sums S x ( t ) = a 1 + ⋯ + a t of partial quotients of continued fraction expansion to x = [ 0 ; a 1 , … , a t ] . In particular we prove that if there exists C such that S x ( t ) ⩽ κ 1 t + log t log 2 + C with κ 1 = 2 log 1 + 5 2 log 2 = 1.38 8 + , then ? ′ ( x ) exists and ? ′ ( x ) = + ∞ . Another result is as follows. Assume that there exists a constant C such that S x ( t ) ⩾ κ 2 t − C with κ 2 = 4 log 5 + 29 2 − 5 log ( 2 + 5 ) log 5 + 29 2 − log ( 2 + 5 ) − log 2 = 4.40 1 + . Then ? ′ ( x ) exists and ? ′ ( x ) = 0 . We show that our conditions on the sum S x ( t ) are the best possible. Our results improve upon earlier theorems by Paradis, Viader, Bibiloni and Dushistova, Moshchevitin.
Keywords :
The Minkowski question mark function , Continuants , Stern–Brocot fractions , Continued fractions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563485
Link To Document :
بازگشت