Title of article :
Orlicz–Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations
Author/Authors :
Tan، نويسنده , , Zhong and Fang، نويسنده , , Fei، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
23
From page :
348
To page :
370
Abstract :
In this work, we study the following boundary value problem ( P ) { − div ( a ( | ∇ u | ) ∇ u ) = f ( x , u ) , in  Ω , u = 0 , on  ∂ Ω , with nonhomogeneous principal part. By assuming the nonlinearity f ( x , t ) corresponds to subcritical growth, we prove a regularity result for weak solutions. Using the regularity result we show that C 1 -local minimizers are also local minimizers in the Orlicz–Sobolev space. So, similar to the approach for the p -Laplacian equation, the sub–supersolution method for this problem is developed. Applying these results and critical point theory, we prove the existence of multiple solutions of problem (P) in the Orlicz–Sobolev space. The result for the sign-changing solution is new for the p -Laplacian equation.
Keywords :
Orlicz–Sobolev spaces , Multiplicity results , Critical groups , Regularity
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563532
Link To Document :
بازگشت