Title of article :
The Lagrangian Averaged Navier–Stokes equation with rough data in Sobolev spaces
Author/Authors :
Pennington، نويسنده , , Nathan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
The Lagrangian Averaged Navier–Stokes equation is a recently derived approximation to the Navier–Stokes equation. In this article we prove the existence of short time solutions to the incompressible, isotropic Lagrangian Averaged Navier–Stokes equation with low regularity initial data in Sobolev spaces W s , p ( R n ) for 1 < p < ∞ . For L 2 -based Sobolev spaces, we obtain global existence results. More specifically, we achieve local existence with initial data in the Sobolev space H n / 2 p , p ( R n ) . For initial data in H 3 / 4 , 2 ( R 3 ) , we obtain global existence, improving on previous global existence results, which required data in H 3 , 2 ( R 3 ) .
Keywords :
Navier–Stokes , global existence , Lagrangian averaging
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications