Title of article :
The least squares mean of positive Hilbert–Schmidt operators
Author/Authors :
Lawson، نويسنده , , Jimmie and Lim، نويسنده , , Yongdo Lim، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
11
From page :
365
To page :
375
Abstract :
We show that, the least squares mean on the Riemannian manifold Σ of positive operators in the extended Hilbert–Schmidt algebra of linear operators on a Hilbert space equipped with the canonical trace metric is the unique solution of the corresponding Karcher equation. This allows us to conclude that, the least squares mean is the restriction of the Karcher mean on the open cone of all bounded positive definite operators, and hence inherits the basic properties of that mean. Conversely, the Karcher mean on the positive definite operators is shown to be the unique monotonically strongly continuous extension of the least squares mean on Σ .
Keywords :
Riemannian manifold , Positive Hilbert–Schmidt operators , Nonpositive curvature , Least squares mean , Karcher equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563606
Link To Document :
بازگشت