Title of article :
Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space
Author/Authors :
Corsato، نويسنده , , Chiara and Obersnel، نويسنده , , Franco and Omari، نويسنده , , Pierpaolo and Rivetti، نويسنده , , Sabrina، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
13
From page :
227
To page :
239
Abstract :
We prove the existence of multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space { − div ( ∇ u / 1 − | ∇ u | 2 ) = f ( x , u , ∇ u ) in  Ω , u = 0 on  ∂ Ω . Here Ω is a bounded regular domain in R N and the function f = f ( x , s , ξ ) is either sublinear, or superlinear, or sub-superlinear near s = 0 . The proof combines topological and variational methods.
Keywords :
topological degree , non-existence , Critical point theory , Mean Curvature , multiplicity , Minkowski space , Positive solution , existence , quasilinear elliptic equation , Dirichlet boundary condition
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563705
Link To Document :
بازگشت