• Title of article

    Self-intersections of the Riemann zeta function on the critical line

  • Author/Authors

    Banks، نويسنده , , William and Castillo-Garate، نويسنده , , Victor and Fontana، نويسنده , , Luigi and Morpurgo، نويسنده , , Carlo، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2013
  • Pages
    7
  • From page
    475
  • To page
    481
  • Abstract
    We show that the Riemann zeta function ζ has only countably many self-intersections on the critical line, i.e., for all but countably many z ∈ C the equation ζ ( 1 2 + i t ) = z has at most one solution t ∈ R . More generally, we prove that if F is analytic in a complex neighborhood of R and locally injective on R , then either the set { ( a , b ) ∈ R 2 : a ≠ b  and  F ( a ) = F ( b ) } is countable, or the image F ( R ) is a loop in C .
  • Keywords
    Self-intersections , Riemann zeta function , Critical line
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2013
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    1563800