Title of article :
The Euler equations in planar nonsmooth convex domains
Author/Authors :
Bardos، نويسنده , , Claude and Di Plinio، نويسنده , , Francesco and Temam، نويسنده , , Roger، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
21
From page :
69
To page :
89
Abstract :
As a model problem for the barotropic mode of the primitive equations of the oceans and atmosphere, we consider the Euler system on a bounded convex planar domain Ω , endowed with non-penetrating boundary conditions. For 4 3 ≤ p ≤ 2 , and initial and forcing data with L p ( Ω ) vorticity we show the existence of a weak solution, enriching and extending the results of Taylor (2000) [32]. physical case of a rectangular domain Ω = [ 0 , L 1 ] × [ 0 , L 2 ] , a similar result holds for all 2 < p < ∞ as well. Moreover, by means of a new BMO -type regularity estimate for the Dirichlet problem on a planar domain with corners, we prove uniqueness of solutions with bounded initial vorticity.
Keywords :
Euler system , Nonsmooth domains , Endpoint elliptic regularity
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563811
Link To Document :
بازگشت