Title of article :
Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space
Author/Authors :
Mariana Fagundes and Charمo، نويسنده , , Ruy Coimbra and da Luz، نويسنده , , Cleverson Roberto and Ikehata، نويسنده , , Ryo، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
9
From page :
247
To page :
255
Abstract :
We study the Cauchy problem for damped wave equations with a fractional damping ( − Δ ) θ u t in R n . We derive more sharp decay estimates of the total energy based on the energy method in the Fourier space combined with the Haraux–Komornik inequality. Especially, in the case when 0 ≤ θ ≤ 1 / 2 the rate of decay of the total energy becomes almost optimal. The method in this paper can be applied to other equations and in particular it seems to be quite effective in the case of frictional dissipation, i.e., when θ = 0 .
Keywords :
high frequency , The Haraux–Komornik inequality , Fractional damping , Low frequency , Fourier analysis , wave equation , Multiplier method , Total energy decay
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563879
Link To Document :
بازگشت