Title of article :
Existence of three solutions for a first-order problem with nonlinear nonlocal boundary conditions
Author/Authors :
Anderson، نويسنده , , Douglas R.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
6
From page :
318
To page :
323
Abstract :
Conditions for the existence of at least three positive solutions to the nonlinear first-order problem with a nonlinear nonlocal boundary condition given by y ′ ( t ) − r ( t ) y ( t ) = ∑ i = 1 m f i ( t , y ( t ) ) , t ∈ [ 0 , 1 ] , λ y ( 0 ) = y ( 1 ) + ∑ j = 1 n Λ j ( τ j , y ( τ j ) ) , τ j ∈ [ 0 , 1 ] , are discussed, for sufficiently large λ > 1 and r ≥ 0 . The Leggett–Williams fixed point theorem is utilized.
Keywords :
Nonlinear boundary condition , Fixed Point Theorem , cone , Leggett–Williams theorem , positive solutions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563886
Link To Document :
بازگشت