Title of article :
Weak Hopf lemma for the invariant Laplacian and related elliptic operators
Author/Authors :
Cho، نويسنده , , Sungwon and Choe، نويسنده , , Boo Rim and Koo، نويسنده , , Hyungwoon، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
13
From page :
576
To page :
588
Abstract :
We obtain a weak version of the Hopf lemma for the invariant Laplacian on the unit ball of the complex n -space. We also show that our result is sharp in some sense. Motivated by this result, we also consider a class of degenerate elliptic operators with the degeneracy depending on the distance to the boundary of the domain. We study the dependence of the validity of Hopf lemma on the degree of degeneracy of the operator. We show that Hopf lemma holds if the degeneracy is small and fails in general if the degeneracy is large. What is more interesting is the critical case for which we show that certain weak version of Hopf lemma holds.
Keywords :
invariant laplacian , Hopf lemma , Degenerating elliptic operator
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563910
Link To Document :
بازگشت