Title of article :
Normal approximations for wavelet coefficients on spherical Poisson fields
Author/Authors :
Durastanti، نويسنده , , Claudio and Marinucci، نويسنده , , Domenico and Peccati، نويسنده , , Giovanni، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
16
From page :
212
To page :
227
Abstract :
We compute explicit upper bounds on the distance between the law of a multivariate Gaussian distribution and the joint law of wavelet/needlet coefficients based on a homogeneous spherical Poisson field. In particular, we develop some results from Peccati and Zheng (2010) [42], based on Malliavin calculus and Stein’s methods, to assess the rate of convergence to Gaussianity for a triangular array of needlet coefficients with growing dimensions. Our results are motivated by astrophysical and cosmological applications, in particular related to the search for point sources in Cosmic Rays data.
Keywords :
Berry–Esseen bounds , Multidimensional normal approximation , Poisson process , Stein’s method , spherical wavelets , Malliavin Calculus
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563955
Link To Document :
بازگشت