Title of article :
Inequalities among eigenvalues of Sturm–Liouville problems with distribution potentials
Author/Authors :
Yan، نويسنده , , Jun and Shi، نويسنده , , Guoliang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
This paper deals with the eigenvalue problems for the Sturm–Liouville operators generated by the differential expression L ( y ) = − ( p ( x ) y ′ ) ′ + q ( x ) y with singular coefficients q ( x ) in the sense of distributions. We obtain the inequalities among the eigenvalues corresponding to different self-adjoint boundary conditions. The continuity region, the differentiability and the monotonicity of the n th eigenvalue corresponding to the separated boundary conditions are given. Oscillation properties of the eigenfunctions of all the coupled Sturm–Liouville problems are characterized. The main results of this paper can also be applied to solve a class of transmission problems.
Keywords :
Distribution potentials , Oscillation properties , eigenvalue inequalities , Sturm–Liouville problems
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications