Title of article :
The Dirichlet divisor problem, traces and determinants for complex powers of the twisted bi-Laplacian
Author/Authors :
Duan، نويسنده , , Xiaoxi and Wong، نويسنده , , M.W.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
7
From page :
151
To page :
157
Abstract :
Estimating the counting function for the eigenvalues of the twisted bi-Laplacian leads to the Dirichlet divisor problem, which is then used to compute the trace of the heat semigroup and the Dixmier trace of the inverse of the twisted bi-Laplacian. The zeta function regularizations of the traces and determinants of complex powers of the twisted bi-Laplacian are computed. A formula for the zeta function regularizations of determinants of heat semigroups of complex powers of the twisted bi-Laplacian is given.
Keywords :
Twisted bi-Laplacian , Dirichlet divisor problem , Complex powers , heat semigroup , Riemann zeta function , zeta function , Dixmier trace , inverse , Determinant , Counting function , Zeta function regularizations , trace
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564050
Link To Document :
بازگشت