Title of article :
Integral manifolds for partial functional differential equations in admissible spaces on a half-line
Author/Authors :
Nguyen، نويسنده , , Thieu Huy and Trinh، نويسنده , , Viet Duoc، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
13
From page :
816
To page :
828
Abstract :
In this paper we investigate the existence of stable and center-stable manifolds for solutions to partial functional differential equations of the form u ˙ ( t ) = A ( t ) u ( t ) + f ( t , u t ) , t ⩾ 0 , when its linear part, the family of operators ( A ( t ) ) t ⩾ 0 , generates the evolution family ( U ( t , s ) ) t ⩾ s ⩾ 0 having an exponential dichotomy or trichotomy on the half-line and the nonlinear forcing term f satisfies the φ-Lipschitz condition, i.e., ‖ f ( t , u t ) − f ( t , v t ) ‖ ⩽ φ ( t ) ‖ u t − v t ‖ C where u t , v t ∈ C : = C ( [ − r , 0 ] , X ) , and φ ( t ) belongs to some admissible function space on the half-line. Our main methods invoke Lyapunov–Perron methods and the use of admissible function spaces.
Keywords :
Exponential dichotomy and trichotomy , Stable and center-stable manifolds , Admissibility of function spaces , Partial functional differential equations
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564189
Link To Document :
بازگشت