Title of article :
Periodic solutions in an array of coupled FitzHugh–Nagumo cells
Author/Authors :
Labouriau، نويسنده , , Isabel Salgado and Murza، نويسنده , , Adrian C.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
12
From page :
29
To page :
40
Abstract :
We analyse the dynamics of an array of N 2 identical cells coupled in the shape of a torus. Each cell is a 2-dimensional ordinary differential equation of FitzHugh–Nagumo type and the total system is Z N × Z N -symmetric. The possible patterns of oscillation, compatible with the symmetry, are described. The types of patterns that effectively arise through Hopf bifurcation are shown to depend on the signs of the coupling constants, under conditions ensuring that the equations have only one equilibrium state.
Keywords :
Equivariant dynamical system , Ordinary differential equation , Periodic Solutions , FitzHugh–Nagumo , Coupled cells , Hopf bifurcation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564203
Link To Document :
بازگشت