Title of article :
The transversal homoclinic solutions and chaos for stochastic ordinary differential equations
Author/Authors :
Guangping، نويسنده , , Luo and Juan، نويسنده , , Liang and Changrong، نويسنده , , Zhu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
25
From page :
301
To page :
325
Abstract :
We consider the persistence of a transversal homoclinic solution and chaotic motion for ordinary differential equations with a homoclinic solution to a hyperbolic equilibrium under an unbounded random forcing driven by a Brownian force. By Lyapunov–Schmidt reduction, the persistence of transversal homoclinic solution is reduced to find the zeros of some bifurcation functions defined between two finite spaces. It is shown that, for almost all sample paths of the Brownian motion, the perturbed system exhibits chaos.
Keywords :
Homoclinic solution , Bifurcation , Lyapunov–Schmidt reduction , Brownian motion , Wiener shift
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564225
Link To Document :
بازگشت