Title of article :
Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions
Author/Authors :
Qu، نويسنده , , Chengyuan and Bai، نويسنده , , Xueli and Zheng، نويسنده , , Sining، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
This paper studies a fast diffusive p-Laplace equation with the nonlocal source | u | q − ⨍ Ω | u | q d x in a bounded domain, subject to homogeneous Neumann boundary value condition. A critical criterion is determined that the changing sign solutions blow up in finite time with q > 1 and non-positive initial energy associated, and must be global for any initial energy if q ⩽ 1 . In particular, the conditions are obtained under which the changing sign solutions vanish in finite time.
Keywords :
p-Laplace equation , Changing sign solution , global existence , Blow-up , extinction
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications