Title of article :
Hadamard three-hyperballs type theorem and overconvergence of special monogenic simple series
Author/Authors :
Abul-Ez، نويسنده , , M. and Constales، نويسنده , , D. and Morais، نويسنده , , J. and Zayed، نويسنده , , M.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
9
From page :
426
To page :
434
Abstract :
The classical Hadamard three-circles theorem (1896) gives a relation between the maximum absolute values of an analytic function on three concentric circles. More precisely, it asserts that if f is an analytic function in the annulus { z ∈ C : r 1 < | z | < r 2 } , 0 < r 1 < r < r 2 < ∞ , and if M ( r 1 ) , M ( r 2 ) , and M ( r ) are the maxima of f on the three circles corresponding, respectively, to r 1 , r 2 , and r then { M ( r ) } log r 2 r 1 ⩽ { M ( r 1 ) } log r 2 r { M ( r 2 ) } log r r 1 . In this paper we introduce a Hadamardʼs three-hyperballs type theorem in the framework of Clifford analysis. As a concrete application, we obtain an overconvergence property of special monogenic simple series.
Keywords :
Monogenic functions , Hadamard three-circles theorem , Clifford analysis
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564235
Link To Document :
بازگشت