Title of article :
Hyperspaces of Keller compacta and their orbit spaces
Author/Authors :
Antonyan، نويسنده , , Sergey A. and Jonard-Pérez، نويسنده , , Natalia and Juلrez-Ordٌَez، نويسنده , , Saْl and Estévez، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
7
From page :
613
To page :
619
Abstract :
A compact convex subset K of a topological linear space is called a Keller compactum if it is affinely homeomorphic to an infinite-dimensional compact convex subset of the Hilbert space ℓ 2 . Let G be a compact topological group acting affinely on a Keller compactum K and let 2 K denote the hyperspace of all non-empty compact subsets of K endowed with the Hausdorff metric topology and the induced action of G. Further, let c c ( K ) denote the subspace of 2 K consisting of all compact convex subsets of K. In a particular case, the main result of the paper asserts that if K is centrally symmetric, then the orbit spaces 2 K / G and c c ( K ) / G are homeomorphic to the Hilbert cube.
Keywords :
Hyperspace , Infinite-dimensional convex set , Keller compactum , Affine group , Orbit space , Q-manifold
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564250
Link To Document :
بازگشت