Title of article :
Hausdorff Besov-type and Triebel–Lizorkin-type spaces and their applications
Author/Authors :
Zhuo، نويسنده , , Ciqiang and Yang، نويسنده , , Dachun and Yuan، نويسنده , , Wen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
21
From page :
998
To page :
1018
Abstract :
Let s ∈ R , p ∈ ( 1 , ∞ ) and τ ∈ ( 0 , 1 / p ′ ] , where p ′ denotes the conjugate index of p. In this article, the authors first introduce the Hausdorff Besov-type space B H ˙ p , q s , τ ( R n ) with q ∈ [ 1 , ∞ ) and the Hausdorff Triebel–Lizorkin-type space F H ˙ p , q s , τ ( R n ) with q ∈ ( 1 , ∞ ) via a class of weights defined on the upper plane, and then establish some equivalent characterizations of B H ˙ p , q s , τ ( R n ) and F H ˙ p , q s , τ ( R n ) via some classes of weights defined on R n . The authors then prove that their dual spaces are Besov–Morrey and Triebel–Lizorkin–Morrey spaces, respectively. The relations between these spaces and the known Besov–Triebel–Lizorkin–Hausdorff spaces are also studied. As an application, for p ∈ ( 1 , ∞ ) and λ ∈ ( 0 , n ) , the authors obtain the coincidence between the space F H ˙ p , 2 0 , ( n − λ ) / ( n p ′ ) ( R n ) and the predual space, H p , λ ( R n ) , of the Morrey space L p , λ ( R n ) . Moreover, characterizations of B H ˙ p , q s , τ ( R n ) and F H ˙ p , q s , τ ( R n ) via local means and Peetre maximal functions, as well as the boundedness of Riesz potential operators and some singular integrals on B H ˙ p , q s , τ ( R n ) and F H ˙ p , q s , τ ( R n ) are also obtained.
Keywords :
Morrey space , Hausdorff capacity , Riesz potential operator , Besov space , Singular integral operator , Triebel–Lizorkin space
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564277
Link To Document :
بازگشت