Title of article :
A generalized Hilbert matrix acting on Hardy spaces
Author/Authors :
Chatzifountas، نويسنده , , Christos and Girela، نويسنده , , Daniel and Pelلez، نويسنده , , José ءngel، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
15
From page :
154
To page :
168
Abstract :
If μ is a positive Borel measure on the interval [ 0 , 1 ) , the Hankel matrix H μ = ( μ n , k ) n , k ⩾ 0 with entries μ n , k = ∫ [ 0 , 1 ) t n + k d μ ( t ) induces formally the operator H μ ( f ) ( z ) = ∑ n = 0 ∞ ( ∑ k = 0 ∞ μ n , k a k ) z n on the space of all analytic functions f ( z ) = ∑ k = 0 ∞ a k z k , in the unit disc D . In this paper we describe those measures μ for which H μ is a bounded (compact) operator from H p into H q , 0 < p , q < ∞ . We also characterize the measures μ for which H μ lies in the Schatten class S p ( H 2 ) , 1 < p < ∞ .
Keywords :
Hilbert matrices , Hardy spaces , BMOA , Carleson measures , Integration operators , Hankel operators , Besov spaces , Schatten Classes
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564298
Link To Document :
بازگشت